- Demuestra por Inducción las siguientes fórmulas:

 - a. $1 + 2 + 3 + \dots + n = \frac{n(n+1)}{2}$ b. $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$ c. $1^3 + 2^3 + 3^3 + \dots + n^3 = \left(\frac{n(n+1)}{2}\right)^2$ d. $\frac{1}{1 \times 2} + \frac{1}{2 \times 3} + \dots + \frac{1}{n \times (n+1)} = \frac{n}{n+1}$

 - e. $1^4 + 2^4 + 3^4 + \dots + n^4 = \frac{6n^5 + 15n^4 + 10n^3 n}{30}$ f. $\left(1 \frac{1}{4}\right)\left(1 \frac{1}{9}\right)\left(1 \frac{1}{16}\right)\dots\left(1 \frac{1}{n^2}\right) = \frac{n+1}{2n}$ Pruebe que para todo entero n impar, $n^2 1$ es múltiplo de 8
- 2)
- Pruebe que $n^3 + 2n$ es divisible por 3 para todo entero positivo n
- Pruebe que $n! > 3^{n-2}$ para todo entero n mayor o igual a 34)
- Pruebe que $(3n)! > 2^{6n-4}$ para todo entero positivo n5)
- La sucesión de Fibonacci $\{F_n\}$ se define con $F_0=0$, $F_1=1$ y $F_{n+2}=F_{n+1}+F_n$ para toda $n\geq 0$. Demuestre lo siguiente por inducción:

 - b. $F_1^2 + F_2^2 + \dots + F_n^2 = F_n F_{n+1}$ para todo entero $n \ge 1$ c. $F_n = \binom{n-1}{0} + \binom{n-2}{1} + \binom{n-3}{2} + \dots$

 - d. $F_{n-1}F_{n+1} = F_n^2 + (-1)^n$
 - e. $F_1 + F_2 + \dots + F_n = F_{n+2} 1$
 - f. $F_1F_2 + F_2F_3 + \dots + F_{2n-1}F_{2n} = F_{2n}^2$ g. $F_1 + F_3 + \dots + F_{2n+1} = F_{2n+2}$

 - h. $F_n(F_{n+1} + F_{n-1}) = F_{2n}$
- Pruebe que el número total de diagonales de un polígono de n lados $(n \ge 3)$ es $\frac{n(n-3)}{2}$
- Si $x \ge 0$ entonces para toda n natural, probar que $(1+x)^n \ge 1+x^n$
- El juego de Nim se juega entre dos personas con las siguientes reglas: Se pone un número n de fichas iguales sobre la mesa. Cada jugador 9) en su turno puede tomar 1, 2 o 3 fichas. El jugador que toma la última ficha pierde. Demuestre que el primer jugador tiene la estrategia ganadora siempre y cuando $n \not\equiv 1 \pmod{4}$
- 10) Para $n \ge 13$, se tiene que $n^2 \le \left(\frac{3}{2}\right)^n$
- 11) Sea n un número compuesto, demuestra que existe un número primo p tal que $p \mid n$
- 12) Demuestra que todo número natural mayor o igual a 2 puede ser factorizado en números primos
- 13) Se tienen 2n puntos en el plano. Se dibujan n^2+1 segmentos de línea entre estos puntos. Demuestra que hay al menos un conjunto de tres puntos que están unidos cada dos por un segmento de línea.
- 14) Hay n carros idénticos en una pista circular. Entre todos ellos, tiene exactamente suficiente gasolina para dar una vuelta a la pista. Demuestre que hay un carro que puede dar la vuelta completa recolectando la gasolina de los carros que se encuentre en su camino.
- 15) Sea x un número real tal que $x + \frac{1}{x}$ es un número entero. Demuestre que $x^n + \frac{1}{x^n}$ es entero para todo n natural.
- 16) Demuestre que (n+1)(n+2) ... $(2n) = 2^n \times 1 \times 3 \times 5 \times ... \times (2n-1)$
- 17) En un tablero cuadrado de $2^n \times 2^n$ dividido en casilla de 1×1 , se remueve una de estas. Muestre que siempre es posible cubrirlo con
- Demuestre que $3^{n+1} \mid 2^{3^n} + 1$ para todo $n \ge 0$ 18)
- Demuestre que todos los números de la forma 1007, 10017, 100117, ... son divisibles por 53
- 20) Demuestre que todos los números de la forma 12008, 120308, 1203308, ... son divisibles por 19
- Demuestre que $(-1)^1 + (-1)^2 + (-1)^3 + \dots + (-1)^n = \frac{(-1)^n 1}{2}$
- Demuestre que $1 4 + 9 16 + \dots + (-1)^{(n+1)}n^2 = (-1)^{n+1}(1 + 2 + 3 + \dots + n)$ 22)
- Demuestre que $6^n 1$ es divisible por 5 para todo n número natural 23)
- Demuestre que para cualquier número natural n y cualquier número real p, se cumple que $(1+p)^n \ge 1 + np + \frac{n(n-1)p^2}{2}$ 24)
- Demuestre que $2^m \ge 1 + m$ para todo m en los naturales 25)
- Demuestre que $2n \leq 2^n$ para todo n natural
- Demostrar $\frac{m^3}{3} < 1^2 + 2^2 + 3^2 + \dots + m^2$ para todo m en los naturales
- Demostrar que $\left(1+\frac{1}{1}\right)\left(1+\frac{1}{2}\right)...\left(1+\frac{1}{n}\right)=n+1$
- Demostrar que $n + 7 < n^2$ para todo entero $n \ge 4$
- 30) Demostrar que $1 + 2n < 3^n$ para todo entero $n \ge 2$
- 31) Demostrar que $2^n < n!$ para todo $n \ge 4$
- 32) Demostrar que para x > 0 real y $n \ge 3$ entero, se cumple que $(1+x)^n > 1 + nx + nx^2$
- Demostrar que $\frac{1}{2^2} + \frac{1}{3^2} + \dots + \frac{1}{n^2} < 2 \frac{1}{n}$ para $n \ge 2$
- 34) Demostrar que $\frac{4^n}{n+1} < \frac{(2n)!}{n!^2}$ para todo entero $n \ge 2$ 35) Demostrar que $1 \times 2^1 + 2 \times 2^2 + 3 \times 2^3 + \dots + n \times 2^n = (n-1) \times 2^{n+1} + 2$