

FINAL, 9 de septiembre 2006 PROBLEMAS

Problema 1

Usando unos cuantos cerillos se pueden hacer *arreglos rectangulares* (como los de la derecha).

\neg , \neg , \neg , \neg ,	1 1 1 1 1 ₁ —	•
╶─╀─╀─╀─┼	, , , , , , , , , , , , , , , , , , ,	•
	┆─┆─┆─┆─┆─	
	╵—╵—╵—╵	

ı¬ı	
· —·	_ _

También se pueden hacer *arreglos cuadrangulares*, (como los de la izquierda).

a) ¿Qué características debe tener un número n para que se pueda hacer un arreglo rectangular de exactamente n cerillos?

b) ¿Se puede hacer un arreglo cuadrangular usando exactamente 2006 cerillos?

Problema 2

Los números Pispiretos son números de 20 cifras, donde cada una de ellas es 8 ó 4. Al menos tienen un ocho. Los ochos siempre están unidos en bloques de 8 ochos. Dos bloques de 8 ochos están separado por al menos de un cuatro.

Problema 3

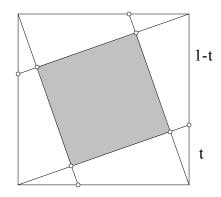
Se tienen 2n ceros y 3n unos escritos en una hoja (sin ningún orden específico), y n es un entero positivo. Por un "reemplazo" se entenderá cualquiera de las dos siguientes operaciones: se eligen dos números, y

- a) si los dos son iguales, se escribe en su lugar solo un 0;
- b) si los dos son diferentes, se escribe un su lugar solo un 1.

Después de realizar **5***n***-1** reemplazos no se pueden hacer más reemplazos pues queda un solo número. ¿Qué número queda, un 1 o un 0? Justifica tu respuesta.

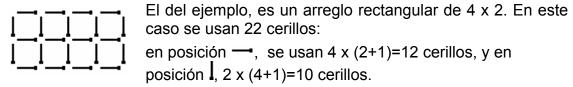
Problema 4

Calcula el área del cuadrado sombreado en función del valor de t.



Problema 1

Empecemos por analizar un caso conocido:



SOLUCIONES

a) Vemos que fácilmente se puede copiar la estructura del ejemplo anterior para el caso general: en un arreglo rectangular de $p \times q$, usamos:

en posición \neg , $p \times (q+1)=pq+p$ cerillos. Y, en posición \mathbf{l} , $q \times (p+1)=pq+q$ cerillos. Así que en total: (pq+p)+(pq+q)=2pq+p+q cerillos

Por lo cual, para poder construir un arreglo rectangular de exactamente n cerillos, deben existir dos números positivos p y q tales que n=2pq+p+q.

b) Así, en un arreglo cuadrangular, n debe tener ser de la forma $2p^2+2p$ pues en este caso p=q. Finalmente tenemos que se podrá construir un arreglo cuadrangular usando 2006 cerillos siempre y cuando exista un número natural p tal que: $2p^2+2p=2006$, o equivalentemente —al factorizar ambos lados—2p(p+1)=2(1003). Sin embargo, 1003 es un número impar, y en cambio, p(p+1) siempre es par, por ser el producto de dos números consecutivos. Concluimos entonces que **no** se puede.

Problema 2

Sólo puede haber números Pispiretos con uno o dos bloques de ochos. Para resolver el problema hagamos tres observaciones:

- 1) La cantidad de números Pispiretos de 20 cifras con un bloque de 8 ochos, es la misma que la cantidad de números que podemos formar de 13 cifras con un ocho y 12 cuatros, ya que el bloque ochos lo podemos reducir a sólo un ocho.
- 2) La cantidad de números Pispiretos de 20 cifras con 2 bloques de 8 ochos es la misma que la cantidad de números de 5 cifras con 2 ochos y tres cuatros. Lo anterior se debe a que el bloque ochos lo podemos reducir a sólo un ocho y ya no contamos el cuatro que siempre debe existir entre los dos bloques de ochos. Inversamente, si tenemos un número de 5 cifras donde hay tres cuatros y dos ochos, cada 8 lo hacemos ocho ochos y agregamos un cuatro entre los ochos quedando un número Pispireto.
- 3) La cantidad de números de C cifras con P ochos y Q cuatros es $\frac{C!}{P!Q!}$.

FINAL, 9 de septiembre 2006

Por las observaciones 1 y 2, tenemos que la cantidad de números Pispiretos es:

$$\frac{13!}{1!12!} + \frac{5!}{2!3!} = 13 + 10 = 23$$

Problema 3:

Definamos S como la cantidad de unos que hay en cada paso. Obviamente, al inicio S=3n. Veamos cómo varia S tras un reemplazo; hay tres casos por considerar:

- i) Si se eligen dos ceros, se reemplazarán por un 0; y entonces el valor de S no varía.
- ii) Si se eligen dos unos, los reemplazas por un 0; y el nuevo valor será S–2.
- iii) Si se eligen un 1 y un 0, se reemplazarán por un 1; y entonces la suma S no varía.

Tenemos pues que, tras cada paso, la paridad de S es invariante. Entonces, como al inicio S=3n, concluimos que S siempre tendrá la misma paridad que N. Concluimos que el último número será 0 si N es par, o bien, 1 si N es impar.

Problema 4

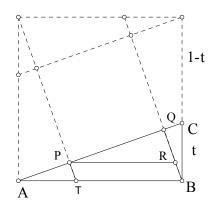
El valor que buscamos es, según la figura de la derecha, PQ^2 .

1) PT y BQ son paralelas porque ambas son perpendiculares a AC.

Al construir PR paralela a AB tenemos que

2) los ángulos QPR y BAC son iguales, y además, como los triángulos ABC y PQR rectángulos entonces son semejantes. Así que

$$\frac{AC}{PR} = \frac{AB}{PQ} \iff PQ = \frac{PR \times AB}{AC}$$



Pero sabemos que AB=1 por hipótesis, PR=1-t porque construimos PRBT paralelogramo, y AC^2 =1+t 2 por el teorema de Pitágoras. Así, al sustituir estos valores en la igualdad de arriba nos queda: $PQ = \frac{PR \times AB}{AC} = \frac{1-t}{\sqrt{1+t^2}}$; y por lo tanto,

el área que buscamos es:
$$PQ^2 = \frac{(1-t)^2}{1+t^2}$$